# metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Fu-Ying Liu,<sup>a</sup> Rui-Ling Shang,<sup>b</sup> Lin Du,<sup>a</sup> Qi-Hua Zhao<sup>a</sup>\* and Rui-Bing Fang<sup>a</sup>

<sup>a</sup>Department of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China, and <sup>b</sup>Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China

Correspondence e-mail: qhzhao@ynu.edu.cn

#### Key indicators

Single-crystal X-ray study T = 298 KMean  $\sigma$ (C–C) = 0.003 Å R factor = 0.030 wR factor = 0.084 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

## Diaquabis(2-methylpyrazine-5-carboxylato)cobalt(II)

The title compound,  $[Co(C_6H_6N_2O_2)_2(H_2O)_2]$ , was obtained from  $Co(CH_3COO)_2 \cdot 6H_2O$  and 2-methylpyrazine-5carboxylic acid. The crystal structure reveals that the Co atom is located on a crystallographic inversion center and is six-coordinated in a distorted octahedral geometry by 2methylpyrazine-5-carboxylate anions and water molecules. The structure is stabilized both by hydrogen bonds forming a two-dimensional network parallel to the *ab* plane and by  $\pi$ - $\pi$ stacking interactions between the 2-methylpyrazine-5carboxylate ligands.

### Comment

We have employed the ligand 2-methylpyrazine-5-carboxylate (MePycza<sup>-</sup>) in reactions with different transition metals to design novel frameworks. A series of complexes based on this ligand presents various structural motifs and dimensionalities (Ciurtin *et al.*, 2001, 2003) because of the strong binding capabilities of the MePyzca ligand with two N atoms and two carboxylate O atoms. In the literature, there are some reports on the compounds obtained from the reaction of the MePyzca ligand with transition metals, such as  $[Cu(MePyzca)_2(H_2O)]$ ·-3H<sub>2</sub>O (Dong *et al.*, 2000), { $[Cu(MePyzca)_2Cu_2Br_2]_2$ }<sub>n</sub> (Ciurtin *et al.*, 2001) and { $[CdI(MePyzca)(H_2O)_21.5]_2$ }<sub>n</sub> (Ciurtin *et al.*, 2003). Here, we present the synthesis and crystal structure of a Co<sup>II</sup> complex of MePyzca, (I).



The molecular structure of (I) (Fig. 1) shows Co on a crystallographic inversion center. The coordination environment of the Co<sup>II</sup> center consists of two oxygen donors and two nitrogen donors from two 2-methylpyrazine-5-carboxylate chelating ligands and two water oxygen donors. The distorted octahedral coordination geometry (Table 1) may be described as an equatorial plane defined by N and O atoms from two 2-methylpyrazine-5-carboxylate ligands and axial positions

© 2007 International Union of Crystallography All rights reserved Received 27 September 2006 Accepted 3 December 2006



Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. [Symmetry code: (A) -x + 1, -y, -z + 1.]

occupied by the two water oxygen donors. The carboxylate group, defined by C6, O1 and O2, is essentially coplanar with the pyrazine ring  $[O2-C6-C1-N1 = 0.5 (2)^{\circ}]$ . The Co1/O2/ N1 plane makes a dihedral angle of 3.39 (15)° with the pyrazine ring. The Co-O(water) and Co-N bond lengths are slightly smaller and the Co-O(acid) bond lengths are slightly larger then the corresponding values for other reported cobalt(II) complexes (Liang *et al.*, 2002; Ciurtin *et al.*, 2002).

The crystal structure is stabilized by  $O-H\cdots O$  hydrogenbonding interactions between O atoms of the carboxylate groups of the MePyzca ligands and O atoms of the water molecules (geometric details in Table 2). The hydrogen bonds link the molecules into layers parallel to the *ab* plane. Furthermore, there are  $\pi-\pi$  stacking interactions between the pyrazine rings and C=O groups of the ligand at position (1 + x, y, z) with a distance of 3.4562 (5) Å between the centroids, which also stabilize the crystal packing (Fig. 2).

## **Experimental**

A solution of MePyzcaH (27.63 mg, 0.2 mmol) in EtOH/H<sub>2</sub>O (1:1  $\nu/\nu$ , 5 ml) was added to a solution of Co(CH<sub>3</sub>COO)<sub>2</sub>·6H<sub>2</sub>O (24.91 mg, 0.1 mmol) in EtOH/H<sub>2</sub>O (1:1  $\nu/\nu$ , 15 ml). The mixture was stirred for 30 min. The resulting solution was filtered and allowed to stand undisturbed at room temperature. After several days, red block-shaped crystals of (I) were obtained from the mother liquor.

#### Crystal data

| $[Co(C_6H_6N_2O_2)_2(H_2O)_2]$  | $V = 366.59 (16) \text{ Å}^3$             |
|---------------------------------|-------------------------------------------|
| $M_r = 369.20$                  | Z = 1                                     |
| Triclinic, $P\overline{1}$      | $D_x = 1.672 \text{ Mg m}^{-3}$           |
| a = 5.1051 (10)  Å              | Mo $K\alpha$ radiation                    |
| b = 6.3653 (13)  Å              | $\mu = 1.21 \text{ mm}^{-1}$              |
| c = 12.281 (3) Å                | T = 298 (2) K                             |
| $\alpha = 103.53 \ (3)^{\circ}$ | Block, red                                |
| $\beta = 91.06 \ (3)^{\circ}$   | $0.29 \times 0.19 \times 0.15 \text{ mm}$ |
| $\gamma = 108.28 \ (3)^{\circ}$ |                                           |
|                                 |                                           |

Data collection

Bruker APEX-II CCD areadetector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 1998)  $T_{\rm min} = 0.761, T_{\rm max} = 0.836$ 

2378 measured reflections 1627 independent reflections 1569 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.011$  $\theta_{\text{max}} = 28.1^{\circ}$ 



### Figure 2

The crystal packing of complex (I), viewed down *a*, showing the hydrogen bonds as dashed lines and the  $\pi$ - $\pi$  stacking interaction.

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_0^2) + (0.0519P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.030$ | + 0.1476P]                                                 |
| $wR(F^2) = 0.084$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.05                        | $(\Delta/\sigma)_{\rm max} = 0.024$                        |
| 1627 reflections                | $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 115 parameters                  | $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$ |
| H atoms treated by a mixture of | Extinction correction: SHELXL97                            |
| independent and constrained     | Extinction coefficient: 0.023 (6)                          |
| refinement                      |                                                            |

## Table 1

Selected geometric parameters (Å, °).

| Co1-O2             | 2.0763 (14) | Co1-N1                   | 2.1176 (16) |
|--------------------|-------------|--------------------------|-------------|
| Co1–O1W            | 2.0854 (19) |                          |             |
| O2-Co1-O1W         | 90.19 (6)   | O2 <sup>i</sup> -Co1-N1  | 101.03 (6)  |
| $O2^i - Co1 - O1W$ | 89.81 (6)   | O1W-Co1-N1               | 91.70 (8)   |
| O2-Co1-N1          | 78.97 (6)   | O1W <sup>i</sup> -Co1-N1 | 88.30 (8)   |

Symmetry code: (i) -x, -y + 1, -z + 1.

#### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------|----------|-------------------------|--------------|--------------------------------------|
| $D1W-H1WA\cdots O2^{ii}$  | 0.79 (3) | 1.98 (3)                | 2.727 (2)    | 156.45                               |
| $D1W-H1WB\cdots O1^{iii}$ | 0.76 (3) | 1.94 (3)                | 2.675 (3)    | 164.62                               |

Symmetry codes: (ii) x + 1, y, z; (iii) -x, -y + 2, -z + 1.

The C-bound H atoms were included in the riding model approximation with C-H distances of 0.93 and 0.96 Å [ $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$  or  $1.5U_{\rm eq}({\rm C})$ ]. The H atoms of the water molecule were located in a difference Fourier map and refined freely.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 20361004 and 20561004). The authors thank Dr Ming-Jin Xie for assistance in the data collection.

## References

Bruker (1998). SADABS. Version 2.0. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2000). *SMART* (Version 5.62) and *SAINT* (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Ciurtin, D. M., Smith, M. D. & Loye, H.-C. (2001). *Inorg. Chim. Acta*, **324**, 46–56.
- Ciurtin, D. M., Smith, M. D. & Loye, H.-C. (2002). Solid State Sci. 4, 461–465.
- Ciurtin, D. M., Smith, M. D. & Loye, H.-C. (2003). Polyhedron, 22, 3043–3049.
- Dong, Y.-B., Smith, M. D. & Loye, H.-C. (2000). Inorg. Chem. 39, 1943–1949.
- Liang, Y.-C., Hong, M.-C., Liu, J.-C. & Cao, R. (2002). *Inorg. Chim. Acta*, **328**, 152–158.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.